资源类型

期刊论文 89

年份

2023 17

2022 14

2021 12

2020 11

2019 1

2018 7

2017 10

2016 2

2015 5

2014 2

2013 2

2012 1

2011 2

2010 1

2008 1

2007 1

展开 ︾

关键词

Al@AP/PVDF纳米复合材料 1

Cu(In 1

Ga)Se2 1

Nd-Fe-B磨削油泥 1

PDT 1

亚甲基蓝 1

亚稳态分子间复合材料 1

内部取代BN 1

再生烧结磁体 1

双光子 1

吸附脱硫 1

图案化 1

宏量 1

实时成像 1

富稀土合金掺杂 1

氧化石墨烯 1

氧掺杂 1

泌尿系统 1

燃烧性能 1

展开 ︾

检索范围:

排序: 展示方式:

Enhancement of open circuit voltage in organic solar cells by doping a fluorescent red dye

Qing LI, Junsheng YU, Yue ZANG, Nana WANG, Yadong JIANG

《能源前沿(英文)》 2012年 第6卷 第2期   页码 179-183 doi: 10.1007/s11708-012-0177-y

摘要: The open circuit voltage ( ) of small-molecule organic solar cells (OSCs) could be improved by doping suitable fluorescent dyes into the donor layers. In this paper, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) was used as a dopant, and the performance of the OSCs with different DCJTB concentration in copper phthalocyanine (CuPc) was studied. The results showed that the of the OSC with 50% of DCJTB in CuPc increased by 15%, compared with that of the standard CuPc/fullerene (C ) device. The enhancement of the was attributed to the lower highest occupied molecular orbital (HOMO) level in the DCJTB than that in the CuPc. Also, the light absorption intensity is enhanced between 400 and 550 nm, where CuPc and C have low absorbance, leading to a broad absorption spectrum.

关键词: organic solar cells (OSCs)     open circuit voltage     fluorescent dye doping     4-(dicyanomethylene)-2-t-butyl-6-(1     1     7     7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)    

Anodic oxidation of azo dye C.I. Acid Red 73 by the yttrium-doped Ti/SnO

Li XU, Zhi GUO, Lishun DU

《化学科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 338-346 doi: 10.1007/s11705-013-1335-4

摘要: This work was conducted to study the ability of anodic oxidation of azo dye C.I. Acid Red 73 (AR73) using the yttrium-doped Ti/SnO -Sb electrodes. The effects of Sb doping level, yttrium doping level, thermal decomposition temperature and cycle times of dip-coating thermal decomposition on the properties of the electrodes were investigated. The results showed that the excellent electrochemical activity of Ti/SnO -Sb-Y electrode can be achieved at a 7∶1 molar ratio of Sn∶Sb and thermal decomposition temperature of 550°C. Moreover when the cycle times of dip-coating and thermal decomposition were up to 10 times, the performance of the electrode tends to be stable. The Ti/SnO -Sb electrodes doped with yttrium (0.5 mol-%) showed the most excellent electrochemical activity. In addition, the influences of operating variables, including current density, initial pH, dye concentration and support electrolyte, on the colour removal, chemical oxygen demand (COD) removal and current efficiency were also investigated. Our results confirmed that the current efficiency increased with the concentrations of dye and sodium chloride. Moreover, increasing the current density and the initial pH would reduce the current efficiency.

关键词: SnO2-Sb     yttrium doping     anodic oxidation     azo dyes    

Information gathering and processing with fluorescent molecules

Brian DALY,Jue LING,A. Prasanna de SILVA

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 240-251 doi: 10.1007/s11705-014-1432-z

摘要: Molecular information gathering and processing — a young field of applied chemistry — is undergoing good growth. The progress is occurring both in terms of conceptual development and in terms of the strengthening of older concepts with new examples. This review critically surveys these two broad avenues. We consider some cases where molecules emulate one of the building blocks of electronic logic gates. We then examine molecular emulation of various Boolean logic gates carrying one, two or three inputs. Some single-input gates are popular information gathering devices. Special systems, such as ‘lab-on-a-molecule’ and molecular keypad locks, also receive attention. A situation deviating from the Boolean blueprint is also discussed. Some pointers are offered for maintaining the upward curve of the field.

关键词: molecular logic     molecular computation     molecular sensor     fluorescent molecular device     fluorescent sensor    

Effect of metal ion-doping on characteristics and photocatalytic activity of TiO

Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 850-860 doi: 10.1007/s11783-014-0737-y

摘要: The effect of ion-doping on TiO nanotubes were investigated to obtain the optimal TiO nanotubes for the effective decomposition of humic acids (HA) through O /UV/ion-doped TiO process. The experimental results show that changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the Brunauer-Emmett-Teller surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on HA removal increased when Ag , Al , Cu , Fe , V , and Zn were doped into the TiO nanotubes, whereas such activities decreased as a result of Mn - and Ni -doping. In the presence of 1.0 at.% Fe -doped TiO nanotubes calcined at 550°C, the removal efficiency of HA was 80% with a pseudo-first-order rate constant of 0.158 min . Fe in TiO could increase the generation of ·OH, which could remove HA. However, Fe in water cannot function as a shallow trapping site for electrons or holes.

关键词: TiO2 nanotubes     ion-doping     humic acids     pseudo-first-order     mechanism    

Piezocatalytic performance of FeO−BiMoO catalyst for dye degradation

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 716-725 doi: 10.1007/s11705-022-2265-9

摘要: A Fe2O3−Bi2MoO6 heterojunction was synthesized via a hydrothermal method. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, powder X-ray diffraction, Fourier transform infrared spectroscopy and ultra-violet−visible near-infrared spectrometry were performed to measure the structures, morphologies and optical properties of the as-prepared samples. The various factors that affected the piezocatalytic property of composite catalyst were studied. The highest rhodamine B degradation rate of 96.6% was attained on the 3% Fe2O3−Bi2MoO6 composite catalyst under 60 min of ultrasonic vibration. The good piezocatalytic activity was ascribed to the formation of a hierarchical flower-shaped microsphere structure and the heterostructure between Fe2O3 and Bi2MoO6, which effectively separated the ultrasound-induced electron–hole pairs and suppressed their recombination. Furthermore, a potential piezoelectric catalytic dye degradation mechanism of the Fe2O3−Bi2MoO6 catalyst was proposed based on the band potential and quenching effect of radical scavengers. The results demonstrated the potential of using Fe2O3−Bi2MoO6 nanocomposites in piezocatalytic applications.

关键词: piezocatalysis     Fe2O3−Bi2MoO6     dye decomposition     ultrasonic vibration    

Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide

《化学科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 34-63 doi: 10.1007/s11705-021-2050-1

摘要: H2S is well-known as a colorless, acidic gas, with a notoriously rotten-egg smell. It was recently revealed that H2S is also an endogenous signaling molecule that has important biological functions, however, most of its physiology and pathology remains elusive. Therefore, the enthusiasm for H2S research remains. Fluorescence imaging technology is an important tool for H2S biology research. The development of fluorescence imaging technology has realized the study of H2S in subcellular organelles, facilitated by the development of fluorescent probes. The probes reviewed in this paper were categorized according to their chemical mechanism of sensing and were divided into three groups: H2S reducibility-based probes, H2S nucleophilicity-based probes, and metal sulfide precipitation-based probes. The structure of the probes, their sensing mechanism, and imaging results have been discussed in detail. Moreover, we also introduced some probes for hydrogen polysulfides.

关键词: hydrogen sulfide     fluorescent probe     reducibility     nucleophilicity     copper sulfide precipitate     hydrogen polysulfides    

Fluorescent properties and

Hong GAO,Jie SONG,Shibin SHANG,Zhanqian SONG

《农业科学与工程前沿(英文)》 2017年 第4卷 第1期   页码 106-115 doi: 10.15302/J-FASE-2017133

摘要: A series of dehydroabietic acid-based diarylamines have been synthesized in order to investigate their fluorescent properties, photostability, cell toxicity and fluorescence imaging. The geometries as well as their molecular properties were optimized at the B3LYP/6-31G* level using Gaussian 03. The results indicate that molecular geometry, HOMO and LUMO energies, and energy gaps are important to predict absorption and fluorescent properties. Five of the compounds can be effectively taken up by human cervical carcinoma, human hepatocellular carcinoma SMMC-7721, human gastric cancer SGC-7901 and human lung adenocarcinoma A549 cells and strong blue fluorescent signals are detected in these cells. These compounds are potential candidates for fluorescent probes in biological diagnosis.

关键词: dehydroabietic acid-based diarylamine     DFT study     fluorescent probe     in vitro imaging    

Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1427-1443 doi: 10.1007/s11705-021-2108-0

摘要: The dye industry produces a large amount of hazardous wastewater every day worldwide, which brings potential threaten to the global environment. As an excellent method for removal of water chroma and chemical oxygen demand, electrocatalytic methods are currently widely used in the treatment of dye wastewater. The selection and preparation of electrode materials and electrocatalysts play an important role on the electrocatalytic treatment. The aim of this paper is to introduce the most excellent high-efficiency electrode materials and electrocatalysts in the field of dye wastewater treatment. Many electrode materials such as metal electrode materials, boron-doped diamond anode materials and three-dimensional electrode are introduced in detail. Besides, the mechanism of electrocatalytic oxidation is summarized. The composite treatment of active electrode and electrocatalyst are extensively examined. Finally, the progress of photo-assisted electrocatalytic methods of dye wastewater and the catalysts are described.

关键词: electrocatalytic oxidation     electrode     electrocatalysis     dye wastewater    

A novel flavonol-based colorimetric and turn-on fluorescent probe for rapid determination of hydrazine

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 24-33 doi: 10.1007/s11705-022-2171-1

摘要: Hydrazine is extremely toxic and causes severe harm to human body. Herein, a novel fluorescent probe 4-oxo-2-styryl-4H-chromen-3-yl thiophene-2-carboxylate (FHT) was synthesized for detecting hydrazine by using natural cinnamaldehyde as starting material. This probe exhibited significantly enhanced fluorescence response towards hydrazine over various common metal ions, anions, and amine compounds. The detection limit of probe FHT for hydrazine was as low as 0.14 μmol·L–1, significantly lower than that of the threshold value of 0.312 μmol·L–1, imposed by the Environmental Protection Agency. Moreover, the proposed probe was able to detect hydrazine within wide pH (5–10) and linear detection ranges (0–110 μmol·L–1). This probe was employed for determining trace hydrazine in different environmental water samples. The probe FHT-loaded filter paper strips were able to conveniently detect hydrazine of low concentration through distinct naked-eye and fluorescent color changes. Importantly, the probe FHT with low cytotoxicity was successfully applied to visualize hydrazine in living Hela cells and zebrafish.

关键词: cinnamaldehyde     3-hydroxychromone derivative     hydrazine     fluorescent probe    

Novel lysosome-targeted anticancer fluorescent agents used in zebrafish and nude mouse tumour imaging

《化学科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 112-120 doi: 10.1007/s11705-021-2075-5

摘要: The design of three novel fatty nitrogen mustard-based anticancer agents with fluorophores incorporated into the alkene structure (CXL 118, CXL121, and CXL122) is described in this report. The results indicated that these compounds are selectively located in lysosomes and exhibit effective antitumour activity. Notably, these compounds can directly serve as both reporting and imaging agents in vitro and in vivo without the need to add other fluorescent tagging agents.

关键词: fluorescent drug     lysosomal     anticancer     zebrafish     nude-mouse tumour imaging    

Fluorescent probes and functional materials for biomedical applications

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1425-1437 doi: 10.1007/s11705-022-2163-1

摘要: Due to their simplicity in preparation, sensitivity and selectivity, fluorescent probes have become the analytical tool of choice in a wide range of research and industrial fields, facilitating the rapid detection of chemical substances of interest as well as the study of important physiological and pathological processes at the cellular level. In addition, many long-wavelength fluorescent probes developed have also proven applicable for in vivo biomedical applications including fluorescence-guided disease diagnosis and theranostics (e.g., fluorogenic prodrugs). Impressive progresses have been made in the development of sensing agents and materials for the detection of ions, organic small molecules, and biomacromolecules including enzymes, DNAs/RNAs, lipids, and carbohydrates that play crucial roles in biological and disease-relevant events. Here, we highlight examples of fluorescent probes and functional materials for biological applications selected from the special issues “Fluorescent Probes” and “Molecular Sensors and Logic Gates” recently published in this journal, offering insights into the future development of powerful fluorescence-based chemical tools for basic biological studies and clinical translation.

关键词: fluorescent probes     imaging     cell     biomedicine     biomolecules    

Enhanced electrochemical performance of CoNiS@TiCT electrode material through doping of cobalt element

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1440-1449 doi: 10.1007/s11705-023-2333-9

摘要: The composite electrode of CoNiSx and Ti3C2Tx MXene was successfully prepared using a one-step hydrothermal method under the in-situ doping of the cobalt element. The effects of in-situ doping of the cobalt element on the micromorphology and electrochemical performance of the electrodes were investigated. After in-situ doping of the cobalt element, NiS with a needle-like structure was converted into a CoNiSx with petal-like structure. The petal-like CoNiSx with a rough surface was very dense and evenly wrapped on the surface and interlamination of Ti3C2Tx, which helped increase the specific surface area and pore volume of the electrode. Under the identical test conditions, CoNiSx@Ti3C2Tx had a higher specific capacitance and capacitance retention than NiS@Ti3C2Tx. This result indicated that the in-situ doping of the cobalt element promoted the electrochemical performance of the electrode. The energy density of the CoNiSx@Ti3C2Tx/nickel foam (NF)//activated carbon (AC)/NF asymmetric supercapacitor device was 59.20 Wh·kg–1 at a power density of 826.73 W·kg–1, which was much higher than that of NiS@Ti3C2Tx/NF//AC/NF. Three CoNiSx@Ti3C2Tx/NF//AC/NF in series were able to illuminate the light emitting diode lamp for about 10 min, which was higher than the 5 min of three NiS@Ti3C2Tx/NF//AC/NF in series under the same condition. The CoNiSx@Ti3C2Tx/NF//AC/NF with high energy density had better application potential in energy storage than the NiS@Ti3C2Tx/NF//AC/NF.

关键词: MXene     supercapacitor     cobalt doping     structure characterization     electrochemical performance    

Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution

Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1134-1146 doi: 10.1007/s11705-020-2014-x

摘要: The exploration of cost-effective, high-performance, and stable electrocatalysts for the hydrogen evolution reaction (HER) over wide pH range (0–14) is of paramount importance for future renewable energy conversion technologies. Regulation of electronic structure through doping vanadium atoms is a feasible construction strategy to enhance catalytic activities, electron transfer capability, and stability of the HER electrode. Herein, V-doped NiCoP nanosheets on carbon fiber paper (CFP) (denoted as V -NiCoP/CFP) were constructed by doping V modulation on NiCoP nanosheets on CFP and used for pH-universal HER. Benefiting from the abundant catalytic sites and optimized hydrogen binding thermodynamics, the resultant V -NiCoP/CFP demonstrates a significantly improved HER catalytic activity, requiring overpotentials of 46.5, 52.4, and 85.3 mV to reach a current density of 10 mA·cm in 1 mol·L KOH, 0.5 mol·L H SO , and 1 mol·L phosphate buffer solution (PBS) electrolytes, respectively. This proposed cation-doping strategy provides a new inspiration to rationally enhance or design new-type nonprecious metal-based, highly efficient, and pH-universal electrocatalysts for various energy conversion systems.

关键词: hydrogen evolution reaction     transition metal phosphides     pH-universal     vanadium doping     carbon fiber paper    

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 93-101 doi: 10.1007/s11705-022-2175-x

摘要: Defect construction and heteroatom doping are effective strategies for improving photocatalytic activity of carbon nitride (g-C3N4). In this work, N defects were successfully prepared via cold plasma. High-energy electrons generated by plasma can produce N defects and embed sulfur atoms into g-C3N4. The N defects obviously promoted photocatalytic degradation performance that was 7.5 times higher than that of pure g-C3N4. The concentration of N defects can be tuned by different power and time of plasma. With the increase in N defects, the photocatalytic activity showed a volcanic trend. The g-C3N4 with moderate concentration of N defects exhibited the highest photocatalytic activity. S-doped g-C3N4 exhibited 11.25 times higher photocatalytic activity than pure g-C3N4. It provided extra active sites for photocatalytic reaction and improved stability of N defects. The N vacancy-enriched and S-doped g-C3N4 are beneficial for widening absorption edge and improving the separation efficiency of electron and holes.

关键词: g-C3N4     nitrogen defect     sulfur doping     photodegradation     plasma    

A highly selective fluorescent probe for real-time imaging of UDP-glucuronosyltransferase 1A8 in living

《化学科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 103-111 doi: 10.1007/s11705-021-2064-8

摘要: Uridine diphosphate (UDP)-glucuronosyltransferases (UGTs) are enzymes involved in the biotransformation of important endogenous compounds such as steroids, bile acids, and hormones as well as exogenous substances including drugs, environmental toxicants, and carcinogens. Here, a novel fluorescent probe BDMP was developed based on boron-dipyrromethene (BODIPY) with high sensitivity for the detection of UGT1A8. The glucuronidation of BDMP not only exhibited a red-emission wavelength (λex/λem = 500/580 nm), but also displayed an excellent UGT1A8-dependent fluorescence signal with a good linear relationship with UGT1A8 concentration. Based on this perfect biocompatibility and cell permeability, BDMP was successfully used to image endogenous UGT1A8 in human cancer cell lines (LoVo and HCT15) in real time. In addition, BDMP could also be used to visualize UGT1A8 in tumor tissues. These results suggested that BDMP is a promising molecular tool for the investigation of UGT1A8-mediated physiological function in humans.

关键词: UDP-glucuronosyltransferase 1A8     fluorescent probe     subtype selectivity     fluorescence imaging    

标题 作者 时间 类型 操作

Enhancement of open circuit voltage in organic solar cells by doping a fluorescent red dye

Qing LI, Junsheng YU, Yue ZANG, Nana WANG, Yadong JIANG

期刊论文

Anodic oxidation of azo dye C.I. Acid Red 73 by the yttrium-doped Ti/SnO

Li XU, Zhi GUO, Lishun DU

期刊论文

Information gathering and processing with fluorescent molecules

Brian DALY,Jue LING,A. Prasanna de SILVA

期刊论文

Effect of metal ion-doping on characteristics and photocatalytic activity of TiO

Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI

期刊论文

Piezocatalytic performance of FeO−BiMoO catalyst for dye degradation

期刊论文

Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide

期刊论文

Fluorescent properties and

Hong GAO,Jie SONG,Shibin SHANG,Zhanqian SONG

期刊论文

Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater

期刊论文

A novel flavonol-based colorimetric and turn-on fluorescent probe for rapid determination of hydrazine

期刊论文

Novel lysosome-targeted anticancer fluorescent agents used in zebrafish and nude mouse tumour imaging

期刊论文

Fluorescent probes and functional materials for biomedical applications

期刊论文

Enhanced electrochemical performance of CoNiS@TiCT electrode material through doping of cobalt element

期刊论文

Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution

Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong

期刊论文

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

期刊论文

A highly selective fluorescent probe for real-time imaging of UDP-glucuronosyltransferase 1A8 in living

期刊论文